Nextlevel-Icon

Helfen Sie uns ein Level weiter. Nehmen Sie an unserer Umfrage teil.

Machine Learning workflows
in Apache Airflow

Digital workflow management is growing in importance

Today's day-to-day business activities are fully intertwined with digital processes. The number of those digital processes and their implementation as workflows is increasing rapidly, not least because of the growing importance of machine learning applications. Nowadays, analyses and forecasts are only started manually in the prototype state; a productive system relies on automation. Here, the choice of the workflow management platform is a key factor for long-term success.

The challenge is that these digital processes must be centrally managed and organized. Especially for business-critical processes, reliable execution and flexibility in the workflow design are essential. In addition to pure execution, great importance is also attached to the monitoring and optimization of workflows and error management. Ideally, the processes are also designed in such a way that they can be easily scaled up. 

Only if both the technical and professional side of the users is involved, acceptance and a sustainable integration of digital processes into the daily work routine can be achieved. The execution as workflows should therefore be as simple and comprehensible as possible.

Whitepaper  Workflow management with Apache Airflow  How do you manage your workflows with  Apache Airflow? Which application scenarios are feasible in practice? With  which features does the new major release react to the current challenges of  workflow management?   Get exclusive whitepaper now  

Digital workflows with the open source platform Apache Airflow

Workflow

Creating advanced workflows in Python

In Apache Airflow the workflows are created with the programming language Python. The entry hurdle is low. In a few minutes you can define even complex workflows with external dependencies to third party systems and conditional branches.

Workflow_wheel

Schedule, execute and monitor workflows

The program-controlled planning, execution and monitoring of workflows runs smoothly thanks to the interaction of the components. Performance and availability can be adapted to even your most demanding requirements.

Database

Best suited for Machine Learning

Here, your Machine Learning requirements are met in the best possible way. Even their complex workflows can be ideally orchestrated and managed using Apache Airflow. The different requirements regarding software and hardware can be easily implemented.

Security

Robust orchestration of third-party systems

Already in the standard installation of Apache Airflow numerous integrations to common third party systems are included. This allows you to realize a robust connection in no time. Without risk: The connection data is stored encrypted in the backend.

Scaling

Ideal for the Enterprise Context

The requirements of start-ups and large corporations are equally met by the excellent scalability. As a top level project of the Apache Software Foundation and with its origins at Airbnb, the economic deployment on a large scale was intended from the beginning.

A glance at the comprehensive intuitive web interface

A major advantage of Apache Airflow is the modern, comprehensive web interface. With role-based authentication, the interface gives you a quick overview or serves as a convenient access point for managing and monitoring workflows.

The orchestration of third-party systems is realized through numerous existing integrations.

  • Apache Hive
  • Kubernetes Engine
  • Amazon DynamoDB
  • Amazon S3
  • Amazon SageMaker
  • Databricks
  • Hadoop Distributed File System (HDFS)
  • Bigtable
  • Google Cloud Storage (GCS)
  • Google BigQuery
  • Google Cloud ML Engine
  • Azure Blob Storage
  • Azure Data Lake
  • ...
Orchestration
The workflow management platform for your demands
20_HG_R_Zahnrad

Flexibility by customization

The adaptability is given by numerous plugins, macros and individual classes. Since Airflow is completely based on Python, the platform is theoretically changeable up to the basics. Adapt Apache Airflow to your current needs at any time.

Truly scalable

Scaling with common systems like Celery, Kubernetes and Mesos is possible at just any time. In this context a lightweight containerization can be installed.

HG_L_Skalierung_1
20_HG_R_Kosten

Completely free of charge

The workflow management platform is quickly available without license fees and with minimal installation effort. You can always use the latest versions to the full extent without any fees.

Benefit from a whole community

As the de facto standard for workflow management, the Airflow Community not only includes users, but the platform also benefits from dedicated developers from around the world. Current ideas and their implementation in code can be found online.

HG_L_Community
HG_R_Userfriendly_1

Agility by simplicity

The workflow definition is greatly accelerated by the implementation in Python and the workflows benefit from the flexibility offered. In the web interface with excellent usability, troubleshooting and changes to the workflows can be implemented quickly..

State-of-the-art workflow management with Apache Airflow 2.0

The new major release of Apache Airflow offers a modern user interface and new functions:

  • Fully functional REST API with numerous endpoints for two-way integration of Airflow into different systems such as SAP BW
  • Functional definition of workflows to implement data pipelines for improved data exchange between tasks in the workflow using the TaskFlow API
  • Interval-based checking of an starting condition with Smart Sensors, which keep the workload of the workflow management system as low as possible
  • Increased usability in many areas (simplified Kubernetes operator, reusable task groups, automatic update of the web interface)

Pipeline
Do you have any questions or need support for your next AI project?   We will be happy to assist you in implementing or optimizing your AI-based  application with our know-how and show you how Machine Learning can provide  added value for you and your company.   Get free consultation  
Do you like to learn more about Machine Learning?
In our blog you will find more interesting articles on this topic
Green AI Carbon accounting green footprint

Green AI - Carbon Accounting for your machine learning applications

In our blog post, we explain how you can introduce carbon accounting in your company and we present metrics for this.

Green_hand_corporate_sustainability

Green AI - Corporate sustainability

The emissions caused by artificial intelligence are growing constantly. We have collected recommendations for more corporate sustainability.

test tubes_Airflow CI/CD

How to build Airflow CI/CD Pipelines for Automated Software Testing

We have collected some practical tips that are helpful when starting or expanding automated software testing in Apache Airflow CI/CD development processes.

circle_data_Data Literacy

Data Literacy for Business Users

Learn more about data literacy in our blog post and how it helps companies shape the social component of their data strategy.

Airflow_Summit_Office

Apache Airflow Summit 2022 - Trends and Topics

In our new blog post, we recap the Apache Airflow Summit 2022 and tell you all about the latest developments and trending topics.

pipes_machine_learning_gitlab cicd

How to operate Apache Airflow with GitLab CI/CD

We show you a possible approach using GitLab CI/CD as a framework to create an application-specific operating framework for Apache Airflow.

Hand_lights_Self-Service Analytics

Self-Service Analytics: Integrate external data into your business AI

In this blog article, we will introduce you to the approaches available for providing external data for self-service analytics by business users.

Question mark_Blogpost_Machine Learning Framework

Which feature store fits your machine learning framework?

In our blogpost we will focus on which feature store fits your machine learning framework and what implementation options are available.

cogwheel_feature_store_blogpost

Feature Stores in Machine Learning Architectures

In our blogpost we will introduce the concept of the feature store and highlight the promises it holds.

SAP_HANA_connector_Wooden_beam_connections

SAP HANA Connector - Hands-on Data Science with SAP HANA

In today's Blogpost, we will show you how to optimize the interaction of SAP HANA with Python by using the NextLytics Python SAP HANA Connector.